
TrenchMV[™] Power MOSFET

IXTF250N075T

(Electrically Isolated Back Surface)

N-Channel Enhancement Mode Avalanche Rated

 $m\Omega$

G = Gate	D = Drain
S = Source	

Symbol	Test Conditions	Maximum F	Maximum Ratings	
V _{DSS} V _{DGR}	$T_J = 25^{\circ}\text{C to } 175^{\circ}\text{C}$ $T_J = 25^{\circ}\text{C to } 175^{\circ}\text{C}; R_{GS} = 1 \text{ M}\Omega$	75 75	V	
V _{GSM}	Transient	± 20	V	
 _{D25} 	T _c = 25°C Package Current Limit, RMS (75 A per lead	,	A	
DM	$T_{\rm C} = 25^{\circ}$ C, pulse width limited by $T_{\rm JM}$	560	A	
I _{AR} E _{AS}	$T_{c} = 25$ °C $T_{c} = 25$ °C	40 1.5	A J	
dv/dt	$I_{S} \leq I_{DM}$, di/dt \leq 100 A/ms, $V_{DD} \leq V_{DSS}$ $T_{J} \leq$ 175°C, $R_{G} = 3.3 \text{ W}$	3	V/ns	
P _D	T _C = 25°C	200	W	
T _J T _{JM} T _{stg}		-55 +175 175 -55 +175	°C °C °C	
T _L T _{SOLD}	1.6 mm (0.062 in.) from case for 10 s Plastic body for 10 seconds	300 260	°C	
V _{ISOL}	50/60 Hz, t = 1 minute, I _{ISOL} < 1 mA, RMS 250	0 V		
F _c	Mounting force 20)120/4.525	N/lb.	
Weight		6	g	

Features

- Ultra-low On Resistance
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
- easy to drive and to protect
- 175°X Οπερατινγ Τεμπερατυρε

Advantages

- Easy to mount
- Space savings
- High power density

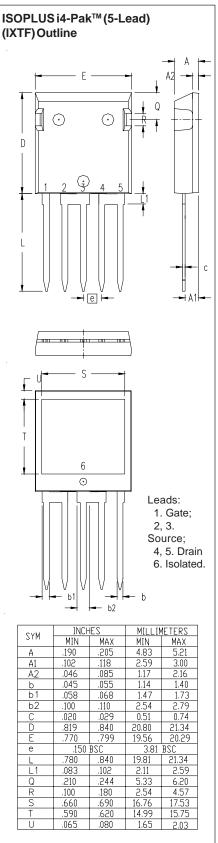
Applications

- Automotive
 - Motor Drives
 - 42V Power Bus
 - ABS Systems
- DC/DC Converters and Off-line UPS
- Primary Switch for 24V and 48V Systems
- High Current Switching Applications

Symbol	Test Conditions	Characteristic Values			es	
$(T_J = 25^{\circ}C \text{ unless otherwise specified})$			Min.	Тур.	Max.	
BV _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		75			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$		2.0		4.0	V
I _{gss}	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$				± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 150°C			5 250	μΑ μΑ
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 50 \text{ A}, \text{ Note:}$	s 1, 2			4.41	mΩ

Symbol	Test Conditions	Characteristic Values T _J = 25°C unless otherwise specified) Min. Typ. Max.		
g _{fs}	V _{DS} = 10 V; I _D = 60 A, Note 1	75	122	S
C _{iss}			9900	pF
C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	Z	1330	pF
\mathbf{C}_{rss}			285	pF
t _{d(on)}			32	ns
t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} =$	50 A	50	ns
t _{d(off)}	$R_G = 3.3 \text{ W (External)}$		58	ns
t _f			45	ns
Q _{g(on)}			200	nC
\mathbf{Q}_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 200 \text{ V}$	25 A	50	nC
\mathbf{Q}_{gd}			60	nC
R _{thJC}				0.75 °C/W
R _{thCH}			0.15	°C/W

Source-Drain Diode


Characteristic Values T₁ = 25°C unless otherwise specified)

Symbol	Test Conditions J	Min.	Тур.	Max.	
Is	$V_{GS} = 0 V$			150	Α
SM	Pulse width limited by T_{JM}			560	Α
V _{SD}	$I_F = 50 \text{ A}, V_{GS} = 0 \text{ V}, \text{ Note 1}$			1.0	V
t _{rr}	$I_F = 25 \text{ A}, -di/dt = 100 \text{ A}/\mu\text{s}$		50		ns
	$V_{R} = 25 \text{ V}, V_{GS} = 0 \text{ V}$				

- Notes: 1. Pulse test: $t \le 300 \,\mu s$, duty cycled $\le 2 \,\%$;
 - 2. Drain and Source Kelvin contacts must be located less than 5 mm from the plastic body.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

All leads and tab are tin plated.

IXYS reserves the right to change limits, test conditions, and dimensions.